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ABSTRACT
An adaptive mesh refinement (AMR)
version of CTH is currently under
development.  This project is being
conducted jointly by researchers at the
University of Texas and at Sandia
National Laboratories.  The AMR version
of CTH represents a significant milestone
in the ten-year development of this legacy
code.

CTH is a multi-material wave propagation
code used by many analysts in the DoD
user community to simulate large
deformations, large strain rates, and strong
shocks in solid, liquids and gases.  The
numerical procedure is based on a finite
volume formulation of very general forms
of the continuum equations.  As such, it
can be applied to a wide variety of
problems.  The computational mesh used
in CTH is Eulerian; materials and material
interfaces are permitted to flow through
the mesh as the calculation proceeds.

The incorporation of new algorithms into
the AMR version of CTH is described.  A
block refinement algorithm that preserves
the location of material interfaces has been
implemented into a working version of the
code.  This algorithm uses advanced
interface tracking to map materials; this
minimizes the dispersion normally
associated with the process.  A multi-
material advection algorithm, which is
basically a generalization of Youngs’

interface reconstruction method to cells
with mismatched faces, is described.
Results from three-dimensional examples
problems are shown that effectively
illustrates the improvements afforded by
these new algorithms.

ADAPTIVE STRATEGY
When implementing adaptive refinement
into an existing code, it is very important
to consider the organization and data
structure of the target application code.
Here, the application code is CTH
(McGlaun et al. 1990), a three-
dimensional multi-material Eulerian wave
propagation code designed for modeling
very large deformations and strong shocks.
The data in CTH is organized in (I,J,K)
logical blocks that correspond to the mesh
used in the problem.  Within a block, the
mesh contours are constrained to remain
parallel with the coordinate axes, and the
introduction of hanging, or constrained,
nodes is not permitted.  However, adjacent
blocks are permitted to have different
values of I, J and K.  Thus, a reasonable
approach for the implementation of
adaptivity, which preserves the original
data structure used in CTH, is to limit
refinement/unrefinement to the block
level.  Furthermore, in order to simplify
the algorithms for communication between
blocks, the refinement/unrefinement was
limited to isotropic 2:1 ratios between
adjacent blocks.  This process is illustrated
in Fig. 1, where a set of communicating



blocks is shown.  The contents of the ghost
cells along the periphery of the blocks are
provided by information coming from
adjacent blocks.  Since these adjacent
blocks may be at a different resolution,
calculating the contents of the ghost cells
may involve a cell split/combine process.

Figure 1.  Block-adaptive strategy applied to target
application code.

A significant part of this effort was to
establish the two-way communication
between blocks, as well as to make the
scheme work in parallel, which is the
subject of another paper (Crawford 1999).
The focus of this work is on the
development of refinement schemes, as
well as error indicators, suitable for
implementation into a three-dimensional
Eulerian shock physics code.

REFINEMENT/UNREFINEMENT
The collapse of 8 child cells (in three
dimensions) into a single parent cell is a
simple process, which for brevity will not
be completely described here.  For
example, intensive quantities (such as
specific internal energy) in the parent cell
are mass averages of the intensive
quantities in the child cells, masses and
volumes are simply sums of the values

from the child cells, and material volume
fractions are volume averages from the
child cells.

The refinement process, on the other hand,
requires a parent cell to be split into 8
child cells.  This process is complicated by
the fact that material interfaces exist
within the cell; thus the location of these
interfaces must be preserved when the
refinement is done. To accomplish this, it
is useful to review the algorithms used for
interface tracking in CTH.

Review of Interface Tracking
In CTH, the location of material interfaces
within a cell is interpreted using Youngs’
algorithm (Youngs 1987).  Youngs’
algorithm is basically a systematic
procedure for determining the position and
orientation of the interface plane
separating two materials in a
computational cell, given the volume
fractions of materials in the cell as well as
the surrounding cells.

The basic procedure used in Youngs’
algorithm is to determine the outward unit

normal vector n and the perpendicular
distance d from the interface plane to a
reference corner.  These two quantities
uniquely determine the position and
orientation of the interface plane.  The
normal n is determined readily from the
volume fractions as

where φ is the volume fraction of the
material of interest.  Likewise, d is
determined based on its value from one of
five possible intersection conditions, given
in Fig. 2.  These include the triangle
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section, two quadrilateral sections, a
pentagonal section, and a hexagonal
section.  Formulas for d in each of these
configurations, as well as the values for n
and φ where each of these is applicable,
can be found elsewhere (Youngs 1987).

Figure 2.  Possible intersection conditions for a plane
intersecting a unit cube: (a) triangle section, (b)

quadrilateral section A, (c) pentagonal section, (d)
hexagonal section, and (e) quadrilateral section B.

Extension to Cell Refinement
Youngs’ algorithm can also be extended to
insure a consistent interface mapping for
cell refinement.  Once n and d for a parent
cell are known, values for n and d can be
recovered for the eight child cells in a
manner that preserves the interface

mapping of the original parent cell.  For
example, consider the refinement of a
parent cell into 8 child cells as is depicted
in Fig. 3.  The unit normal vector

Figure 3.  Schematic of refinement of a parent cell
into eight equal volume child cells.

n is the same for the eight children as it is
for the parent.  The values for d, on the
other hand, are given by

where di denotes the value of d for the
child cells depicted in Fig. 3.  Note that the
formulas for di given in Eq. (2) are values
corresponding to a unit cell.

Once the values for n and di in each of the
child cells are known, a procedure can be
followed for determining the volume
fractions for materials in each of the
children.  The number of intersection
conditions that must be considered again
reduces to the five possibilities given in
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Fig. 2.  Formulas for φ in each of these
configurations, as well as ranges for n and
di where each of these is applicable, can be
found elsewhere (Littlefield and Oden
1999).

BLOCK-ADAPTIVE MULTI-
MATERIAL ADVECTION
The location of material interfaces within
a cell also has an effect on the advection of
mass, momentum and energy to adjacent
cells.  As such, in incorporating a block-
adaptive scheme, it is important to
consider the details of material interfaces
on the advection between blocks of
different mesh resolutions.

Figure 4.  Illustration of multi-material advection.

Review of Multi-Material Advection
In order to understand the procedure for
implementation of block-adaptive multi-
material advection, it is instructive to
review the standard multi-material
algorithm in CTH.  A second-order

algorithm is used to advect variables
between adjacent cells.  Central to the
algorithm is a determination of the volume
fractions of materials in the advection
volume.  A variant of Youngs’ algorithm
is used for this purpose.

Consider advection occurring to the right
from a unit cube, as is illustrated in Fig. 4.
The total advection volume is denoted as
ε.  The material advection volume is the
volume enclosed by the intersection of the
interface plane with the total advection
volume.  Youngs’ original method outlines
an extensive set of formulas needed to
determine the volume fraction of the
material enclosed in the total advection
volume.  However, a much simpler
method is to simply re-normalize the
values for n and d for the interface plane
with respect to the total advection volume.
This technique is used in a number of
Eulerian hydrocodes (including CTH), but
to the author’s knowledge has never been
published in the open literature.  For
example, for advection occurring in the +2
direction, the proper normalizations are:

where ~ denotes the appropriate quantity
normalized to the advection volume.  Note
that the value for ñ for the material
interface in the advection volume is the
same value as for the cell volume, but the
value for d is translated so that it is
applicable to the interface in the total
advection volume, not the cell volume.
Here, it is understood that a negative value
for d implies that the material interface
does not intersect the advection volume.
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Once the values for ñ and d have been
determined, the same set of formulas used
to determine material volume fractions in
the refined cells (e.g., see Littlefield and
Oden 1999) can be used again to
determine the volume fractions of
materials in the advection volume.

Extension to Block-Adaptive Multi-
Material Advection
This technique can also be extended to
determine the materials contained in
advection volumes across mesh blocks that
are at different resolutions.  For example,
consider four adjacent cells (in three
dimensions), each one of these similar to
that shown in Fig. 4, advecting to a low-
resolution cell lying to the right.  In that
case, the volumes of materials advected to
the low-resolution cell are simply the sums
of the material volumes coming from the
high-resolution cells.  However, when a
low-resolution cell advects to four high-
resolution cells, the split of materials to
the cells must be accomplished in a
manner that preserves interfaces.
Consider the division of an advection
volume into four high-resolution advection

Figure 5.  Advection to high-resolution cells.

volumes, as shown in Fig. 5.  The
normalization given in Eq. (3) determines
the values for n and d in the advection
volume.  A second normalization
determines the values for n and d in the
four high-resolution cells.  For example,
for advection in the +2 direction the
components of the unit normal become:

where – denotes components in the high-
resolution cells.  These normals are the
same for each of the four cells.  Likewise,
the values for d become:

where di denotes the value of d for each of
the high-resolution advection volumes
depicted in Fig. 5. Note that a negative
value for any of the di's implies that this
interface does not intersect the cell.

With the values for n and d known, the
material volume fractions for each of the
high-resolution advection volumes are
determined using the same formulas for
cell refinement referred to previously
(Littlefield and Oden, 1999).
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ERROR ESTIMATION
A novel formulation for estimates of the
error in the calculation, based on estimates
of cell residuals, was developed as a
means for triggering refinement and
unrefinement.  This formulation has been
presented elsewhere (Littlefield and Oden
1999), and for brevity will not be repeated
here.

PROGRESS AND CALCULATIONS
Integration of the algorithms described
herein is work still in progress; the high-
resolution refinement algorithm has been
implemented into CTH, but the advection
algorithm is not yet complete.  Further, the
residual error estimates for triggering
refinement/unrefinement have not yet been
implemented.  Nevertheless, even without
these algorithms, preliminary results are
promising and effectively illustrate the
benefits of adaptivity to these types of
computations.

Figs. 6 – 8 show a sequence of images
from a typical simulation.  In this
calculation, an aluminum sphere impacts
an aluminum plate at 5 km/s.  The initial
velocity vector subtends an angle of 45°
with respect to the normal of the plate, and
the ratio of the sphere diameter to the plate
thickness is 1.5.  The initial impact
configuration is shown in Fig. 6, where
materials and mesh blocks are shown
(each block represents a 12x12x12
uniform mesh in the calculation).  By 2.6
µs, Fig. 7 shows that the sphere and the
plate are severely deformed and bulged
from the impact.  Block refinement in the
bulged region behind the plate is apparent.
Fig. 8 shows fragments of the plate and
sphere propagating across the mesh; block
refinement in the regions containing these
fragments is evident.

Figure 6.  Impact of an aluminum sphere on an
aluminum plate - initial impact geometry.

Figure 7.  Impact of an aluminum sphere on an
aluminum plate – 2.6 µs after impact.

Figure 8.  Impact of an aluminum sphere on an
aluminum plate – 5.9 µs after impact.

CONCLUSIONS
A selection of algorithms necessary for
integration of block-adaptive mesh
refinement in an Eulerian impact
mechanics code is described. Complete
integration of these algorithms is in
progress.  Preliminary results demonstrate



that adaptive mesh refinement can
significantly improve the computational
efficiency of this class of simulations.  The
implications for high-performance
computing applications are profound:
since these problems typically push the
memory and CPU limits of any computing
platform, improvements in computational
efficiency with adaptive mesh refinement
increases the size and/or decreases the
resources required for simulation.
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